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ABSTRACT 

A new approach for kinetic analysis of nu~~eat~on-an~-~~~~~ 

process is proposed; Arrhenius type of temperature dependeneace 

of the rates of both elementary processes is assumed and the 

reciprocal absolute temperature is decreased at a constant rate* 

For the prowess, a fundamental non-isothermal kinetic equation 

is obtained, and to estimate the dimension of the growth and the 

overall activation energy, a method is derived from the 

fundamental equation. 

Wethods for kinetic analysis of thsrmoanalytical data of a 

process cmsisting of a single elementary process were established 

and have been applied to various processes, for example, random 

scission in main chain of polymers, 1) phase boundary controlling 

process, 2) crystallization from pre-existing nuclei 3) and 

diffusion. 4) However, only a li.miteB method was proposed to a 

process in which nucleation and its successive growth are involved, 

and we can obtain only limited information by the method. 51 

On the other hand, thermal analysis has been carried out 

generally at a constant rate of heating or cooling, and the above 

methods have been applied to thus obtained data, while a desorption 

spectrum, i.e., a volatilization curve of sorbed species, has been 

obtained in a way that the reciprocal absolute temperature 

decreases at a constant rate. 6) In this case, reduced time, 1,714 is 

a following rsimple function of the temperature, if the Arrhenius 

type of temperature dependence of the rate constant holds. 
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In the above equation, E, R and T are the activation energy, the 

gas constant and the absolute temperature, and the temperature 

changes as the following function of time, t. 

(2) 

where To is the initial temperature and b is a constant. 

Therefore, a simple fundamental kinetic equation is expected 

for the case, and we can expect also simple relations of the 

kinetic parameters with observed data for the kinetic analysis. 

In this report, the fundamental equation is described and simple 

methods for kinetic analysis are proposed. 

THEORETICAL CONSIDERATION 

The kinetic equation of the nucleation-and-growth process under 

general non-isothermal conditionswas reported elsewhere. 7) 

However, it is complicated, so that the equation is derived below 

for the case of linear decrease of the reciprocal absolute 

temperature. 

To derive the kinetic equation, an analogy devised by Evans 5, 8) 

is very useful. Raindrops on a pond and waves caused by them are 

compared to the process, in which the nucleation and the growth 

front correspond to the raindrops and the waves, respectively. 

However, there is a fundamentally different point between the two 

cases, and the difference should be taken into account. Multiple 

waves can pass over a particular point on the pond, while only one 

growth front can pass over a particular point in the sample. 

Therefore, the area of the pond where any waves have not yet passed 

over and the unconverted portion of the sample may be corresponded 

with each other. To calculate them, Poisson's distribution is app- 

lied by using the expected number of waves which passed over the 

particular point. 

The raindrops, which fell from the beginning to the time u at 

a distance r from particular point, can send waves to the 

point until the time t, provided that the distance r equals to 

the distance which the wave can traverse in the time interval 

from u to t. Thus, the expected number of waves which passed 

over the point until t is given as follows. 
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where E and N are the expected number and the rate at which 

raindrops fall or the rate of nucleation. 

Now, in the process of nucleation and growth, 

N = No expf - En/RTf f4k t 
r= J vo expi -EgfRTf dt (51 

II 

where En and E 
g 

are the activation energies of nucleation and 

growth, respectjvely, and No and vo are constants. By introducing 

eqs (4) and (5) into eq (3) under the condition of eq (2), we have 

E= s exp( - 
En + 2E 

9) (6) 
b RT 

where 2 is a constant as follows; 

2nNoVoLRJ 

' = En(En'E gHEn+2Egf 

The fundamental kinetic equation can be derived by applying 

Poisson's distribution: 

- ln(1 - C) =3exp( - E,+2Eg) 

where C is the conversion, and by dffferentiating, we have 

For general case of growth dimension, we can derive the following 

equations similarly. 

zm - ln(l - Cl = m+l exp( - 
E,cmE 

b 
-----JI RT 

and 

!g%- 
Zm(En+mE 1 

bm R 
’ exp( - - Cl 

8) 
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(10) 

(11) 

where m is equal to the dimension of the growth and Zm is constant 



but different from 2 for m = 1 or 3. 

For the case that the growth proceeds from pre-existing nuclei, 

N in eq (3) is a constant and we obtain the following simple 

equations for the two-dimensional growth; 

- ln(1 - C) = %& exp( - $1 

and 

dC=ZZ’Eg exp( 
dt bR 

(12) 

(13) 

where 2' equals to ?rNvo2R2/Eg2. 

Similarly, for the one-dimensional and three-dimensional growth 

- ln(1 - C) = -Z expf - RT 
bm 

and 

dC mZ'mEg -= 
dt bm-1R 

mEq) (1 exp( - RT - C) 

(14) 

(15) 

METHODS FOR KINETIC ANALYSIS 

As seen in eqs (81, (lo), (12) and (14)‘ similar relations 

between -ln(l-C), t and b hold for all types of processes discussed 

in this paper. Thus, two ways of the analysis are devised and 

both need thermoanalytical curves obtained by changing b. 

At a given temperature -ln(l-C) is inversely proportional to 

b 
m+l 

or bm. Thus, we get a straight line by plotting log(-ln(l-Cl) 

against log b, and m or m+l can be estimated. As far as the plots 

at different temperatures give the same slope, one of the kinetic 

models described in this paper are valid for the case. To confirm 

this result, observation by other means, such as microscopy, is 

desirable. 

At a given conversion, exp(-Eo/RT)/bmil or exp(-mRg/RT)/bm is 

constant, where E. means the overall activation energy equal to 

En+mE , 
4 

because -ln(l-C) is constant. Thus, when we plot log b 

versus l/T at a given conversion, we get a straight line, the 

slope of which is -Eo/R(m+l) or -Eg/R. If the kinetic models 

described in this paper are valid in a certain conversion range 

from the beginning, the above plots at different conversions give 

straight lines parallel to each other, and the slopes are also 

equal to each other. The parallel lines and the equality of the 
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for kinetic analysis can be applied to the case and the real 

kinetic parameters can be obtained. 

By differentiating eqs (9), (ll), (13) and (15), we can obtain 

a relation at the maximum rats of the process. NameLy, 

d2C 
z=O 

Then, 

(16) 

- ln(l -C)=l (17) 

Therefore, at the maximum rate, the conversion becomes a constant 

value, which is independent on b and equals to 1 - l/e. Thus, 

the same plot of log{-ln(l-C)) versus l/T can .alSO be applied to 

the maximum rate,, as in the other methods. 
3,4 f 9) 

DISCUSSION 

First of all, we should examine whether the temperature can be 

raised as described in this paper with the ususal apparatuses. When 

the sample is heated up to 1100 K from 300 K within one hour, 

the final and maximum rate of heating is 60 R/min. This rate can 

be achieved with the usual apparatuses, and for this type of temper- 

ature program, computer control is easily applied. 

However, another problem should be pointed out. That is 

baseline shift in DSC curves. As the heating rate is gradually 

increased in a quadratic function of temperature, the baseline 

also gradually increased, so that the integration for estimating 

the conversion should be made by taking the baseline shift into 

account. For using the temperature at the maximum rate of the 

process, it is desirable to redraw the curve by subtracting the 

baseline shift around the peak of the DSC curve. 

It should be noted that eqs (12) and (14) can 

the following equation, where Zmo is a constant. 

- ln(1 - C) = zmoem 

In this equation 9 is the same with eq (1) and E 

Thus, it is shown that eqs (12) and (14) are the 

is replaced by Eg. 

specifio forms of 

be converted to 

(18) 

the fundamental kinetic equation of the growth from pre-existing 

nuclei for general temperature changes reported previously. 3) 
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It is also interesting to note that the power of b in the funda- 

mental kinetic equations, i.e., eqs (11, (81, (101, (12) and (14), 

is the same as that of the constant rate for linear temperature 

changes for all types of processes discussed here. l# 3, 4, 5) Thus I 
the power of b or the linear constant rate is equal to the number 

of involved elementary processes, if we assign number of one, two 

and three to the one-dimensional, the two-dimensional and the 

three-dimensional growth mechanisms, respectively. 

Finally, the author would like to point out importance of 

theoretical considerations, such as reported here. Relations 

between observed data and kinetic parameters can be derived from 

kinetic models by mathematical derivation, and it is the very 

beginning of the analysis of thermoanalytical data. Without these 

derived relations, we cannnot do anything for kinetic analysis. 

Therefore, this paper is one of attempts to expand the application 

thermal analysis. 
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